当前位置: > 已知函数y=x2-2ax+1(a为常数)在-2≤x≤1上的最小值为h(a),试将h(a)用a表示出来,并求出h(a)的最大值....
题目
已知函数y=x2-2ax+1(a为常数)在-2≤x≤1上的最小值为h(a),试将h(a)用a表示出来,并求出h(a)的最大值.

提问时间:2020-11-03

答案
∵y=(x-a)2+1-a2
∴抛物线y=x2-2ax+1的对称轴方程是x=a.(1分)
(1)当-2≤a≤1时,由图①可知,当x=a时,该函数取最小值h(a)=1-a2;(3分)
(2)当a<-2时,由图②可知,当x=-2时,该函数取最小值h(a)=4a+5;(5分)
(3)当a>1时,由图③可知,当x=1时,该函数取最小值h(a)=-2a+2(7分)
综上,函数的最小值为h(a)=
4a+5 a<−2
1−a2 −2≤a≤1
−2a+2,a>1.
(8分)
当a<-2时h(a)<-3(9分)
当-2≤a≤1时-3≤h(a)≤1(10分)
当a>1时h(a)<0(11分)
∴h(a)≤1
∴h(a)max=1(12分)
由该函数的性质可知,该函数的最小值与抛物线的对称轴的位置有关,于是需要对对称轴的位置进行分类讨论.

二次函数在闭区间上的最值.

解决二次函数的最值问题,应该先求出二次函数的对称轴,判断出对称轴与区间的关系,进一步判断出二次函数的单调性,进一步求出函数的最值.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.