题目
在ΔABC中,∠C=90°,P为三角形内一点,且S(PAB)=S(PBC)=S(PCA).
求证:PA^2+PB^2=5PC^2.
求证:PA^2+PB^2=5PC^2.
提问时间:2020-11-03
答案
证明 已知ΔABC是直角三角形,AB为斜边,记AB=c,BC=a,CA=b.则有:
c^2=a^2+b^2. (1)
满足:S(PAB)=S(PBC)=S(PCA),易证P是RtΔABC的重心.
设mc,ma,mb分别表示RtΔABC的对应边AB,BC,CA上的中线,则有
PC=2mc/3, PA=2ma/3, PB=2mb/3.
而三角形中线公式为:
4(mc)^2=2a^2+2b^2-c^2,
4(ma)^2=2b^2+2c^2-a^2,
4(mb)^2=2c^2+2a^2-b^2.
欲证明PA^2+PB^2=5PC^2,等价于证明
4(ma)^2+4(mb)^2=20(mc)^2 (2)
因为在RtΔABC中,4(mc)^2=2a^2+2b^2-c^2=c^2
而4(ma)^2+4(mb)^2=4c^2+a^2+b^2=5c^2.
所以(2)式成立.
c^2=a^2+b^2. (1)
满足:S(PAB)=S(PBC)=S(PCA),易证P是RtΔABC的重心.
设mc,ma,mb分别表示RtΔABC的对应边AB,BC,CA上的中线,则有
PC=2mc/3, PA=2ma/3, PB=2mb/3.
而三角形中线公式为:
4(mc)^2=2a^2+2b^2-c^2,
4(ma)^2=2b^2+2c^2-a^2,
4(mb)^2=2c^2+2a^2-b^2.
欲证明PA^2+PB^2=5PC^2,等价于证明
4(ma)^2+4(mb)^2=20(mc)^2 (2)
因为在RtΔABC中,4(mc)^2=2a^2+2b^2-c^2=c^2
而4(ma)^2+4(mb)^2=4c^2+a^2+b^2=5c^2.
所以(2)式成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1在比例尺是1:4000000地图上……
- 2某合金60克与足量的盐酸完全反应,生成3克氢气,则合金组成为?
- 3最后一个字是成字的祝福老人的四字成语
- 4So has he 和So he has 的区别
- 5怎么知道哪条边比上哪条边,哪个角比上哪个角.
- 6初一《第一次月考》作文
- 770℃时的m g硝酸钾的不饱和溶液,在恒温下蒸发水分至有较多的晶体析出,然后冷却至30℃并保持温度不变.能正确表示此过程中溶质质量分数(x%)与时间(t)的关系的示意图是( ) A. B
- 8matlab x=0:6:15; y=10*(x^2+1).^(-3/2).*[1-3/(x^2+1)]; plot(y);
- 9His father is a little different from other parents.He just wants his son to play___.
- 10新概念第二册第29课选择题答案