当前位置: > 已知(x+1/2根x)^n的展开式中前三项的系数成等差数列 1,求n的值 2,求展开式中系数最大项...
题目
已知(x+1/2根x)^n的展开式中前三项的系数成等差数列 1,求n的值 2,求展开式中系数最大项

提问时间:2020-11-03

答案
前三项系数
1,n*1/2,[n(n-1)/2]*(1/2)^2
所以n=1+[n(n-1)/2]*(1/2)^2
n=1,n=8
显然n=8
第k项是C8(k-1)*[x^(1/2)]^(8-k+1)*[1/2*2x^(-1/2)]^(k-1)
指数是1
(9-k)/2-(k-1)/2=1
k=4
所以系数=C83*1^(8-4+1)*(1/2)^(4-1)=7
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.