当前位置: > 求与圆x^2+y^2-2x=0内切且与直线 x+√3y=0相切于点M(1,-√3/3)的圆的方程...
题目
求与圆x^2+y^2-2x=0内切且与直线 x+√3y=0相切于点M(1,-√3/3)的圆的方程

提问时间:2020-11-03

答案
设方程(x-a)^2+(y-b)^2=c^2
与圆x^2+y^2-2x=0内切
(x-1)^2+y^2=1
(a-1)^2+b^2=(1-c)^2.1
与直线 x+√3y=0相切于点M(1,-√3/3)
(a+√3b)/2=c.2
(1-a)^2+(-√3/3-b)^2=c^2.3
解得
a=4/3 b=0 c=2/3
圆方程(x-4/3)^2+y^2=4/9
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.