题目
已知:抛物线的解析式为y=x2-(2m-1)x+m2-m,
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值.
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值.
提问时间:2020-11-03
答案
证明:(1)令y=0得:x2-(2m-1)x+m2-m=0①
∵△=(2m-1)2-4(m2-m)×1>0(3分)
∴方程①有两个不等的实数根,
∴原抛物线与x轴有两个不同的交点(4分);
(2)令:x=0,根据题意有:m2-m=-3m+4(5分)
解得m=-1+
∵△=(2m-1)2-4(m2-m)×1>0(3分)
∴方程①有两个不等的实数根,
∴原抛物线与x轴有两个不同的交点(4分);
(2)令:x=0,根据题意有:m2-m=-3m+4(5分)
解得m=-1+