当前位置: > 过点P(2,1)作直线L,分别交X轴,Y正半轴于于A、B两点,当三角形AOB面积最小时,求直线L的方程?...
题目
过点P(2,1)作直线L,分别交X轴,Y正半轴于于A、B两点,当三角形AOB面积最小时,求直线L的方程?

提问时间:2020-11-03

答案
设直线方程为Y=K(X-2)+1(K=2倍根号下((-2K)·(1/-2K)) +2=4
当且仅当“(-2K)=(1/-2K)”时,三角形AOB面积有最小值为4,则K=-1/2(K
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.