当前位置: > 已知x1与x2为方程x的平方+3x+1=0的两实数根,求x1的立方+8x2+20=0请不要用韦达定理做...
题目
已知x1与x2为方程x的平方+3x+1=0的两实数根,求x1的立方+8x2+20=0请不要用韦达定理做

提问时间:2020-11-03

答案
x1^3+8*x2+20 = x1^3-27+27+8*x2+20 = (x1-3)*(x1^2+3*x1+9)+27+8*x2+20
因为 x1^2+3*x1+1=0所以上式 = (x1-3)*8+8*x2+47 = 8*(x1+x2)+23 = -1 不等于 0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.