当前位置: > 1.在空间四边形ABCD中,H,G分别是AD,CD的中点,E,F分别是边AB,BC上的点,且CF/FB=AE/EB=1/3.求证:直线EH,BD,FG相交于一点....
题目
1.在空间四边形ABCD中,H,G分别是AD,CD的中点,E,F分别是边AB,BC上的点,且CF/FB=AE/EB=1/3.求证:直线EH,BD,FG相交于一点.
1.在空间四边形ABCD中,H,G分别是AD,CD的中点,E,F分别是边AB,BC上的点,且CF/FB=AE/EB=1/3.求证:直线EH,BD,FG相交于一点.

提问时间:2020-11-03

答案
∵H,G分别是AD,CD的中点,E,F分别是边AB,BC上的点,且CF/FB=AE/EB=1/3.
∴EH不平行于BD,即相交,FG不平行于BD,即相交
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.