题目
函数f(x)=ax+b/x2+1是定义在(-∞,+∞)上的奇函数,且f(1/2)=2/5
1、求实数a、b,并确定函数f(x)的解析式
2、判断f(x)在(-1,1)上的单调性,并用定义证明你的结论
3、解不等式f(t-1)+f(t)<0
1、求实数a、b,并确定函数f(x)的解析式
2、判断f(x)在(-1,1)上的单调性,并用定义证明你的结论
3、解不等式f(t-1)+f(t)<0
提问时间:2020-11-03
答案
是“f(x)=(ax+b)/(x²+1)”吧?
1、
∵f(x)是奇函数
∴f(0)=b/1=b=0
∴f(1/2)=(a/2)/(5/4)=2/5
∴a=1
∴f(x)=x/(x²+1)
2、
证明:
设:-1<x1<x2<1
f(x1)-f(x2)
=x1/(x1²+1) - x2/(x2²+1)
=[x1(x2²+1) - x2(x1²+1)] / [(x1²+1)(x2²+1)]
=(x1x2²+x1-x2x1²-x2) / [(x1²+1)(x2²+1)]
=[x1x2(x2-x1)-(x2-x1)] / [(x1²+1)(x2²+1)]
=[(x1x2-1)(x2-x1)] / [(x1²+1)(x2²+1)]
∵-1<x1<x2<1,∴x1x2<1
∴x1x2-1<0,x2-x1>0,x1²+1>0,x2²+1>0
∴f(x1)-f(x2)=[(x1x2-1)(x2-x1)] / [(x1²+1)(x2²+1)] <0
∴f(x1)<f(x2)
∴f(x)在(-1,1)上单调递增.
3、个人感觉第三题要加一个“t-1,t∈(-1,1)”
∵t-1,t∈(-1,1),
∴t∈(0,1)
∵f(x)是奇函数
∴-f(t)=f(-t)
∴f(t-1)+f(t)
1、
∵f(x)是奇函数
∴f(0)=b/1=b=0
∴f(1/2)=(a/2)/(5/4)=2/5
∴a=1
∴f(x)=x/(x²+1)
2、
证明:
设:-1<x1<x2<1
f(x1)-f(x2)
=x1/(x1²+1) - x2/(x2²+1)
=[x1(x2²+1) - x2(x1²+1)] / [(x1²+1)(x2²+1)]
=(x1x2²+x1-x2x1²-x2) / [(x1²+1)(x2²+1)]
=[x1x2(x2-x1)-(x2-x1)] / [(x1²+1)(x2²+1)]
=[(x1x2-1)(x2-x1)] / [(x1²+1)(x2²+1)]
∵-1<x1<x2<1,∴x1x2<1
∴x1x2-1<0,x2-x1>0,x1²+1>0,x2²+1>0
∴f(x1)-f(x2)=[(x1x2-1)(x2-x1)] / [(x1²+1)(x2²+1)] <0
∴f(x1)<f(x2)
∴f(x)在(-1,1)上单调递增.
3、个人感觉第三题要加一个“t-1,t∈(-1,1)”
∵t-1,t∈(-1,1),
∴t∈(0,1)
∵f(x)是奇函数
∴-f(t)=f(-t)
∴f(t-1)+f(t)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1【程序代码vb】求在1~5000范围内所有偶数中满足被11整除余5,并且被17整除余3 的数之平方和
- 2杯子里有水,水上有一块冰,当冰溶后,杯子里的水是上升还是下降
- 3如图,在三角形ABC中,AB=AC,P为BC上任意一点,请用学过的知识说明:AB^2-AP^2=PB*PC
- 4亚洲北美洲北部的人属于
- 5英语翻译
- 6英语翻译
- 7已知a.b.c是三角形ABC的三边 判定a方-b方-c方-2bc的符号
- 8圆锥母线长为R,侧面展开图圆心角的正弦值为根号3/2,求高
- 9水泥混凝土抗折强度怎么评定,合格判定系数K值怎么取?在大于10组时取多少?在大于等于20组时取多少?
- 10光合作用强度用单位面积一定时间内吸收二氧化碳的测定量表示,会导致结果与实际变低还是变高,为什么