当前位置: > 关于正交矩阵的证明题...
题目
关于正交矩阵的证明题
设A是n级正交矩阵,证明:对于欧几里得空间R^n中任一列向量a,都有
|Aa|=|a|
这是原题来的!还有那个|a|是代表向量a的长度,定义为|a|=√(a,a)

提问时间:2020-11-03

答案
应该是|Aa|=|Ea|吧!列向量是没法求行列式的.符号好象也有问题.
Aa=AEa
|Aa|=|A||Ea|
A^2=E
所以|A|^2=1
|A|=±1
所以|Aa|=±|Ea|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.