当前位置: > 设A 为实对称矩阵,λ1≠λ2为其特征值,α,β为对应的特征向量,则关于未知数x的方程λ1α+xβ=0的解为=?...
题目
设A 为实对称矩阵,λ1≠λ2为其特征值,α,β为对应的特征向量,则关于未知数x的方程λ1α+xβ=0的解为=?

提问时间:2020-11-03

答案
属于实对称矩阵的不同特征值的特征向量正交
所以用β对等式两边做内积得 x(β,β)=0
由于特征向量β≠0
所以 x = 0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.