题目
△ABC是等腰直角三角形AB=AC,D是斜边BC的中点,EF分别是AB,AC边上的点且DE⊥DF,若BE=12CF=5,求△DEF的面积
提问时间:2020-11-02
答案
连接AD,
∵△ABC是等腰直角三角形AB=AC,D是斜边BC的中点,
∴∠B=∠C=45°,AD=½BC,AD⊥BC
∴∠DAB=∠B=45°
∵DE⊥DF
∴∠EDF=90°
即∠EDA+∠ADF=90°
又∵∠CDF+∠ADF=90°
∴∠EDA=∠CDF
在△AED与△CFD中
∠DAB=∠B=45
AD=CD
∠EDA=∠CDF
∴△AED≌△CFD
∴AE=CF=5
ED=FD
∴AB=BE+AE=12+5=17=AC
AF=AC-CF=17-5=12
在Rt△AEF中,由勾股定理,可得EF=√(AE²+AF²)=13
在Rt△DEF中,由勾股定理,可得ED=FD=(13/2)√2
∴S△DEF=½×DE×DF=½×(13/2)√2×(13/2)√2=169/4
∵△ABC是等腰直角三角形AB=AC,D是斜边BC的中点,
∴∠B=∠C=45°,AD=½BC,AD⊥BC
∴∠DAB=∠B=45°
∵DE⊥DF
∴∠EDF=90°
即∠EDA+∠ADF=90°
又∵∠CDF+∠ADF=90°
∴∠EDA=∠CDF
在△AED与△CFD中
∠DAB=∠B=45
AD=CD
∠EDA=∠CDF
∴△AED≌△CFD
∴AE=CF=5
ED=FD
∴AB=BE+AE=12+5=17=AC
AF=AC-CF=17-5=12
在Rt△AEF中,由勾股定理,可得EF=√(AE²+AF²)=13
在Rt△DEF中,由勾股定理,可得ED=FD=(13/2)√2
∴S△DEF=½×DE×DF=½×(13/2)√2×(13/2)√2=169/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点