当前位置: > 求解一道数学题 高一...
题目
求解一道数学题 高一
在数列{An}中,A1=2, A(n+1)=kAn+k^n+1+(2-k)*2^n(n是大于0的自然数),其中k>0.求:
(1)数列{An}的通项公式;
(2)数列{An}的前n项的和Sn
(3)证明存在t(t是大于0的自然数) 使得A(n+1)/An

提问时间:2020-11-02

答案
由题意:A(n+1)=kAn+k^(n+1)+(2-k)*2^n
两边除以k^(n+1):
A(n+1)/k^(n+1)=A(n)/k^(n)+1+(2-k)/k .(2/k)^n
即 A(n+1)/k^(n+1)=A(n)/k^(n)+1+(2/k-1) .(2/k)^n
移项得:
A(n+1)/k^(n+1)-(2/k)^(n+1)=A(n)/k^(n)+1-(2/k)^n
令U(n)=A(n)/k^n-(2/k)^n,则
U(n+1)=U(n)+1,其中U(1)=2/k-2/k=0.
所以 U(n)=0+1+2+...+(n-1)=n(n-1)/2
故A(n)/k^n-(2/k)^n=n(n-1)/2
通项为:A(n)=n(n-1)k^n/2+2^n
2.错位相减.
OK...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.