当前位置: > 证明:若向量OA OB OC的终点A B C共线,则存在实数r p,且r+p=1,使得向量OC=r向...
题目
证明:若向量OA OB OC的终点A B C共线,则存在实数r p,且r+p=1,使得向量OC=r向
量OA+p向量OB,反之,也成立.

提问时间:2020-11-02

答案
设A、B、C三点共线,O是平面内任一点.因为A、B、C共线,所以存在非零实数k,使AB=kAC即 OB-OA=k(OC-OA)所以 OB=kOC+(1-k)OA[注:两个系数和 k+1-k=1]反之,若存在实数x,y 满足 x+y=1,且OA=xOB+yOC则 OA=xOB+(1-x)OCOA-OC...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.