题目
已知数列an满足:an+1-2an=2^n+1,且a1=2 (1)证明{an/2^n}是等差数列 (2)求数列an的
提问时间:2020-11-02
答案
不知道你的2^n+1是不是2^(n+1)
(1)对an+1-2an=2^n+1两边同时除以2^(n+1)得a(n+1)/2^(n+1)-an/2^n=1
因为a1/2=1,所以数列{an/2^n}是以1为首项,1为公差的等差数列
那么有an/2^n=1+(n-1)*1=n
所以an=n*2^n
(2)由(1)知sn=1*2+2*2^2+3*2^3+..+n*2^n
2sn=1*2^2+2*2^3+3*2^4+..+(n-1)2^n+n*2^(n+1)
得 sn-2sn= 1* 2 +(2^2+2^3+2^4..+2^n)-n*2^(n+1)
即 sn= - (2+2^2+2^3+2^4+..+2^n)+n*2^(n+1
sn= -[1*(1-2^n)]+n*2^(n+1)
=-1-2^n+n*2^(n+1)
=(4n-1)*2^(n-1)- 1
(1)对an+1-2an=2^n+1两边同时除以2^(n+1)得a(n+1)/2^(n+1)-an/2^n=1
因为a1/2=1,所以数列{an/2^n}是以1为首项,1为公差的等差数列
那么有an/2^n=1+(n-1)*1=n
所以an=n*2^n
(2)由(1)知sn=1*2+2*2^2+3*2^3+..+n*2^n
2sn=1*2^2+2*2^3+3*2^4+..+(n-1)2^n+n*2^(n+1)
得 sn-2sn= 1* 2 +(2^2+2^3+2^4..+2^n)-n*2^(n+1)
即 sn= - (2+2^2+2^3+2^4+..+2^n)+n*2^(n+1
sn= -[1*(1-2^n)]+n*2^(n+1)
=-1-2^n+n*2^(n+1)
=(4n-1)*2^(n-1)- 1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 17.525/0.38用竖式计算,并且保留两位小数.
- 2某超高压输电线路中,线电压为220kv,输送电流为700A,若输电线路的每相电阻为10Ω,试计算负载功率因数为0
- 3英语翻译
- 4一mol金刚石里含几molC-C键呢?
- 5我们应该怎样看待那些与类似的古老作品?
- 6古诗词是我国传统文学宝库中的珍品,是先人留给我们的宝贵的文化遗产.在六年的小学学习生活中,你一定学习
- 7一根钢管,第一次截去了5分之2,第二次截去了2米,这时截去的与全长的比是3比4..这根钢管长多少米.
- 8about to和 be to的区别 no not none never 区别是什么啊
- 9一场暴风雨过去,碧空如洗,海面上波涛起伏 仿写
- 102006的平方减2005乘2007分之2006咋么算
热门考点