当前位置: > 如果m、n是任意给定的正整数(m>n),证明:m²+n²、2mn、m²-n²是勾股数(又称毕达哥...
题目
如果m、n是任意给定的正整数(m>n),证明:m²+n²、2mn、m²-n²是勾股数(又称毕达哥
斯数)急啊

提问时间:2020-11-02

答案
a=m^2+n^2 b=m^2-n^2 c=2mn b^+c^2=(m^2-n^2)^2+(2mn)^2 =m^4-2m^2*n^2+n^4+4m^2*n^2 =m^4+2m^2*n^2+n^4=(m^2+n^2)=a^2 即:b^2+c^2=a^2 所以,m^2+n^2,m^2-n^2,2mn这三个数就是一组勾股数组.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.