当前位置: > 如图,在△ABC中,AB=AC,AD⊥BC于D,E、G分别为AD、AC边的中点,DF⊥BE于F.求证:FG=DG...
题目
如图,在△ABC中,AB=AC,AD⊥BC于D,E、G分别为AD、AC边的中点,DF⊥BE于F.求证:FG=DG

提问时间:2020-11-02

答案

延长BE,DG,两线相交于H 
∵AB=AC,AD⊥BC 
∴BD=DC 
∵E ,G分别为AD, AC中点
∴EG‖DC,EG=DC/2=BD/2 
所∴△HEG∽△HBD 
∴HG/HD=EG/BD=1/2 
即G为DH中点 
又∵DF垂直BE于F,∠DFH=90° 
∴ FG=DH/2=DG (由直角三角形斜边中线等斜边一半)
即FG=DG
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.