当前位置: > 关于积分中值定理的...
题目
关于积分中值定理的
f(x)和g(x)在[a,b]可导连续;
[a,b) 上,∫(x,a) f(t)dt>=∫(x,a) g(t)dt,∫(b,a)f(x)dx=∫(b,a) g(x)dx,证:∫(b,a) xf(x)dx

提问时间:2020-11-02

答案
证:假设:f(x)的原函数是F(x)
g(x)的原函数是G(x)
由题得:F(x)-F(a)>=G(x)-G(a)……1
F(b)-F(a)=G(b)-G(a)……2
要证:∫(b,a) xf(x)dx
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.