当前位置: > 我是高数菜鸟,请教一个关于极限和界限的定理证明题.有些疑问请求指教...
题目
我是高数菜鸟,请教一个关于极限和界限的定理证明题.有些疑问请求指教
定理 若数列{ xn } 有极限,则{ xn }有界(n是下标)
证明 要证明:存在正数M,使得所有xn都满足不等式
|xn| ≤ M (n=1,2,………)
设 Lim xn =a 则由定义知道,对ε=1,存在正整数N,使得当n>N 时,有|xn -a| < 1,
n→∞
从而|xn|=|(xn-a)+a| ≤|(xn-a) |+|a|
取M=max{ 1+|a|, |x1|,|x2|,|x3|,… |xN|} 则不等式|xn| ≤ M 对一切正整数n 成立,即有 界 { xn }有界.
疑问1:ε一般情况下,不是无穷小吗,这里怎么设定为1?
疑问2:M=max{ 1+|a|, |x1|,|x2|,|x3|,… |xN|} 这个集合怎么来的?什么意思?为什么这样设?
更正:从而|xn|=|(xn-a)+a| ≤|(xn-a) |+|a| < 1+|a| 漏写< 1+|a| 了。
整个证明过程中,没发现设定为1 有什么作用。如果ε不设定为1,则xn -a|

提问时间:2020-11-02

答案
ε为任意大于0的数 可以任取
当人 你可以带着ε 也可以自己去取 都一样 因为极限定义的ε是任取 既然极限存在 我们随便取一个1 也满足不等式
M=max{ 1+|a|,|x1|,|x2|,|x3|,… |xN|} 这是取最大的集合 也就是 取 所有Xn都满足的集合
这样不等式|xn| ≤ M 对一切正整数n 成立,即有 界 { xn }有界
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.