当前位置: > 设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵...
题目
设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵

提问时间:2020-11-02

答案
因为 A^2=A,所以 A(A-E)=0
所以 A 的特征值只能是 0,1
又因为A是n阶实对称矩阵,r(A) = r
所以 A 的特征值有r个1,n-r个0
所以 2E-A 的特征值有r个1,n-r个2
所以 |2E-A| = 2^(n-r)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.