当前位置: > 向量OP=(2COSX+1.COS2X-SINX+1),向量OQ=(COSX,-1),f(X)=OP*OQ,(1)求f(X)的最小正周期...
题目
向量OP=(2COSX+1.COS2X-SINX+1),向量OQ=(COSX,-1),f(X)=OP*OQ,(1)求f(X)的最小正周期
(2)求x∈(0,2π),当OP*OQ<-1时,求x的取值范围

提问时间:2020-11-02

答案
OP*OQ=(2COSX+1)COSX+(COS2X-SINX+1)*(-1)
化简,得
f(x)=sinx+cosx=√2sin(x+π/4)
f(X)的最小正周期:T=2π
求x∈(0,2π),当OP*OQ<-1时,求x的取值范围
√2sin(x+π/4)<-1
sin(x+π/4)<-√2/2
解得
π
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.