当前位置: > 过椭圆x^2/a^2+ y^2/b^2=1的右焦点F作直线交椭圆于A,B两点,求证以弦AB为直径的圆与与椭圆的右准线相离...
题目
过椭圆x^2/a^2+ y^2/b^2=1的右焦点F作直线交椭圆于A,B两点,求证以弦AB为直径的圆与与椭圆的右准线相离

提问时间:2020-11-02

答案
证明:圆半径为r,则r=AB/2
分别过点A,B做右准线的垂线,则构成一个直角梯形,两底长分别为AF/e,BF/e(e为离心率)
圆心到准线的距离d为梯形的中位线长即(AF+BF)/2e
∵0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.