当前位置: > 半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,则三个三角形面积之和S△ABC+S△ACD+S△ADB的最大值为(  ) A.4 B.8 C.16 D.32...
题目
半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,则三个三角形面积之和S△ABC+S△ACD+S△ADB的最大值为(  )
A. 4
B. 8
C. 16
D. 32

提问时间:2020-11-02

答案
解析:根据题意可知,设AB=a,AC=b,AD=c,
则可知AB,AC,AD为球的内接长方体的一个角.
故a2+b2+c2=16,
S△ABC+S△ACD+S△ADB
1
2
(ab+ac+bc)
a2+b2+a2+c2+b2+c2
4
a2+b2+c2
2
=8

故选B.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.