当前位置: > 证明:任意取14个自然数,至少有两个自然数被13除的余数相同?...
题目
证明:任意取14个自然数,至少有两个自然数被13除的余数相同?

提问时间:2020-11-02

答案
设N为自然数,我们可以将N写成N=13n+1;13n+2;13n+3;13n+4;13n+5;13n+6;13n+7;13n+8;13n+9;13n+10;13n+11;13n+12;13n.
所以自然数当中被13除的的余数,只能是0,1,2,3,4,5,6,7,8,9,10,11,12.共13个,现在取14个数,所以必然至少有两个自然数被13除的余数相同
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.