当前位置: > 证明:sin3*sin1=sin^2(2)-sin^2(1)...
题目
证明:sin3*sin1=sin^2(2)-sin^2(1)

提问时间:2020-11-02

答案
用到的公式:
1.sin(a+b)=sinacosb+sinbcosa 和其逆用
2.1+cos(2a)=2cos^2(a)
证明
sin3*sin1
=sin2cos1sin1+sin1cos2sin1
=1/2*sin^2(2)+sin^2(1)cos2
因为sin3*sin1=sin^2(2)-sin^2(1)
移项后即要证明:
sin^2(2)-1/2*sin^2(2)=sin^2(1)cos2+sin^2(1)
即 1/2*sin^2(2)=sin1^2(1)cos2+sin^2(1)
右边=sin^2(1)*(cos(2)+1)
=sin^2(1)*(2cos^2(1))
=2*1/4*sin^2(2)
=1/2sin^2(2)=左边
得证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.