题目
已知:如图,在梯形ABCD中,AB∥CD,AC⊥BC,AC平分∠DAB,点E为AC的中点.求证:DE=
BC
1 |
2 |
提问时间:2020-11-02
答案
证明:证法一:∵AB∥CD,∴∠DCA=∠BAC.(1分)
∵∠DAC=∠BAC,∴∠DAC=∠DCA,
∴DA=DC.(1+2分)
∵点E是AC的中点,∴DE⊥AC,(2分)
∵AC⊥BC,
∴∠AED=∠ACB=90°.(1分)
∴△AED∽△ACB.
∴
=
=
.
∴DE=
BC.(2+2+1分)
证法二:
延长DE交AB于点F,(1分)
∵AB∥CD,∴∠DCA=∠BAC,(1分)
∵∠DAC=∠BAC,∴∠DAC=∠DCA,
∴DA=DC.(1+2分)
∵点E是AC的中点,∴DE⊥AC,(2分)
∵AC⊥BC,∴∠CED=∠ACB=90°,
∴EF∥BC.(1分)
∴点F是AB的中点.
∴EF=
BC.(1+1分)
∵
=
,
∴DE=EF=
BC.(1+1分)
∵∠DAC=∠BAC,∴∠DAC=∠DCA,
∴DA=DC.(1+2分)
∵点E是AC的中点,∴DE⊥AC,(2分)
∵AC⊥BC,
∴∠AED=∠ACB=90°.(1分)
∴△AED∽△ACB.
∴
DE |
BC |
AE |
AC |
1 |
2 |
∴DE=
1 |
2 |
证法二:
延长DE交AB于点F,(1分)
∵AB∥CD,∴∠DCA=∠BAC,(1分)
∵∠DAC=∠BAC,∴∠DAC=∠DCA,
∴DA=DC.(1+2分)
∵点E是AC的中点,∴DE⊥AC,(2分)
∵AC⊥BC,∴∠CED=∠ACB=90°,
∴EF∥BC.(1分)
∴点F是AB的中点.
∴EF=
1 |
2 |
∵
DE |
EF |
CE |
AE |
∴DE=EF=
1 |
2 |
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点