当前位置: > 设f(x)具有二阶连续函数,f(0)=0,f′(0)=1,且[xy(x+y)-f(x)y]dx+[f′(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解....
题目
设f(x)具有二阶连续函数,f(0)=0,f′(0)=1,且[xy(x+y)-f(x)y]dx+[f′(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.

提问时间:2020-11-02

答案
因为 Pdx+Q dy=0 是全微分方程的一个必要条件是:∂P∂y=∂Q∂x,所以x2+2xy-f(x)=f″(x)+2xy,即:f″(x)+f(x)=x2. (1)因为齐次微分方程 f″(x)-f(x)=0 的特征方程为 λ2+1=0,特征根为 λ1,2=±i...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.