当前位置: > 已知数列{an}的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数).令bn=2^n*an,求证数列{bn}是等差数列,并求数列{an}的通项公式...
题目
已知数列{an}的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数).令bn=2^n*an,求证数列{bn}是等差数列,并求数列{an}的通项公式
图在哪

提问时间:2020-11-02

答案
Sn=-an-(1/2)^(n-1)+2所以 S(n-1)=-a(n-1)-(1/2)^(n-2)+2相减Sn-S(n-1)=an=-an-(1/2)^(n-1)+a(n-1)+(1/2)^(n-2)(1/2)^(n-2)-(1/2)^(n-1)=(1/2)^(n-2)-1/2*(1/2)^(n-2)=(1/2)^(n-2)2an=a(n-1)+(1/2)^(n-2)2an-(1/2)^(...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.