当前位置: > 用闭区间套定理证明闭区间连续函数最值性...
题目
用闭区间套定理证明闭区间连续函数最值性

提问时间:2020-11-02

答案
若f(x)是闭区间[a,b]上的连续函数,U=sup{f(x)},那么把区间二等分之后至少有一个闭区间以为上确界,如此一直等分下去得到一个闭区间套,其交集为单点集,记t属于这组闭区间套的交,那么f(t)=U.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.