当前位置: > 已知a,b,c,d都是正实数,且a^4+b^4+c^4+d^4=4abcd.求证a=b=c=d...
题目
已知a,b,c,d都是正实数,且a^4+b^4+c^4+d^4=4abcd.求证a=b=c=d

提问时间:2020-11-02

答案
证明:∵a^4+b^4+c^4+d^4=(a^4+b^4)+(c^4+d^4)
又 a,b,c,d都是正实数
∴a^4+b^4+c^4+d^4=[(a^2)^2+(b^2)^2]+[(c^2)^2+(d^2)^2]
>=2a^2*b^2+2c^2*d^2=2[(ab)^2+(cd)^2]
>=2*2abcd=4abcd
当 a=b①,c=d,②ab=cd③ 时等号成立
   又 a^4+b^4+c^4+d^4=4abcd ④
由①②③④得 a=b=c=d
∴a=b=c=d
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.