当前位置: > 若三角形ABC的内角满足sin2A=2/3 则sina+cosa=_____ (sinA+cosA)^2=1+sin2A=5/3 所以sinA+cosA=根号15/3 为什么sinA+cosA就=根号...
题目
若三角形ABC的内角满足sin2A=2/3 则sina+cosa=_____ (sinA+cosA)^2=1+sin2A=5/3 所以sinA+cosA=根号15/3 为什么sinA+cosA就=根号15/3了呢 请懂的人讲讲

提问时间:2020-11-02

答案
根号下(5/3)=根号5/根号3
因为下出来的分母不能带根号 所以分母的根号3要换成有理数
方法就是分母分子同时乘以一个根号3
最后就得根号15/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.