当前位置: > 运用函数单调性证明不等式:ln(1+x)<x (x>0)...
题目
运用函数单调性证明不等式:ln(1+x)<x (x>0)

提问时间:2020-11-02

答案
令f(x)=x-ln(1+x)
则f'(x)=1-1/(1+x)=x/(x+1)在x≥0时始终为正
从而f(x)在x≥0为严格单调增函数
所以当x>0时f(x)>f(0) =0-ln1=0即ln(1+x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.