当前位置: > 三角形abc在内角ABC的对边分别是abc,已知a=bcosC+csinB,求B...
题目
三角形abc在内角ABC的对边分别是abc,已知a=bcosC+csinB,求B
若b=2,求三角形ABC面积最大值

提问时间:2020-11-02

答案
作a边上的高,则a=bcosC+ccosB∵a=bcosC+csinB∴sinB=cosB∴B=45°(2)∵b²=a²+c²-2accosB∴a²+c²-√2ac=4≥2ac-√2ac∴ac≤4/(2-√2)=4+2√2ac最大值为4+2√2∴S⊿ABC=1/2acsinB≤1/2*(4+2...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.