当前位置: > 在三角形ABC,角C=90度,它的内切圆O分别与边AB、BC、CA相切于点D、E、F,且BD=6,AD=4.求圆O的半径r...
题目
在三角形ABC,角C=90度,它的内切圆O分别与边AB、BC、CA相切于点D、E、F,且BD=6,AD=4.求圆O的半径r

提问时间:2020-11-02

答案
因为 角C=90度,内切圆O分别与边AB、BC、CA相切于点D、E、F
所以 BE=BD,AF=AD,CE=CF=r
因为 BD=6,AD=4
所以 BC=BE+CE=6+r,AC=AF+CF=4+r,AB=AD+BD=10
因为 角C=90度
所以 AB^2=BC^2+AC^2
所以 r=2或-12
因为 r>0
所以 r=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.