当前位置: > 在三角形ABC中,已知tanB=√3,cosC=1/3,AC=3√6,求三角形ABC的面积...
题目
在三角形ABC中,已知tanB=√3,cosC=1/3,AC=3√6,求三角形ABC的面积
2005 湖北的题

提问时间:2020-11-02

答案
非常简单,这道题是较为简单的解答题,因此没必要做的太长,适当简洁些即可
已知tanB=√3,cosC=1/3 则显然B C都为锐角 sinB=tanB*cosB=tanB*{1/√[1+(tanB)平方]}
=√3/2 cosB=√[1-(sinB)平方]=1/2
sinC=√[1-(cosC)平方]=2√2/3
又知道 AC=3√6
根据正玄定理 AC/sinB=AB/sinC 则AB=8
根据两角和的正玄展开式
sinA=sin[π-(B+C)]=sin(B+C)=sinB*cosC+cosB*sinC=(2√2+√3)/6
故三角形ABC的面积=(1/2)*AC*AB*sinA=8√3+6√2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.