当前位置: > 等差数列An=2n+1 Bn=1/An^2-1 求Bn前N项和Tn...
题目
等差数列An=2n+1 Bn=1/An^2-1 求Bn前N项和Tn

提问时间:2020-11-02

答案
Bn=1/An^2-1=1/[(2n+1)^2-1]=1/(4n^2+4n)=1/4*1/[n*(n+1)]
又∵1/[n*(n+1)]=1/n-1/(n+1)]
∴Tn=1/4*[1/1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)]
=1/4*[1/1-1/(n+1)]
=1/4*[(n+1)/(n+1)-1/(n+1)]
=1/4*[(n+1-1)/(n+1)]
=n/(4n+4)
有什么不懂的请追问,我会为您详细解答,
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.