当前位置: > 设关于x的一元二次方程ax^2+x+1=0(a>0)有两实根下,x1,x2,若x1/x2∈[1/10,10],试求a的最大值....
题目
设关于x的一元二次方程ax^2+x+1=0(a>0)有两实根下,x1,x2,若x1/x2∈[1/10,10],试求a的最大值.

提问时间:2020-11-02

答案
逐一分析条件
有两实数根,说明△=1-4a>=0
根据韦达定理有
x1+x2=-1/a
x1*x2=1/a
可以知道x1+x2=-x1*x2 ,两边除以x2得
x1/x2+1=-x1即x1/x2=-x1-1,又x1/x2∈[1/10,10]
所以x1∈[-11,-11/10]
1/x1∈[-10/11,-1/11]
根据ax^2+x+1=0得a=(-x1-1)/x1^2=-1/x1^2-1/x1=-(1/x1+1/2)^2+1/4
当x1=-1/2时a取最大值1/4,同时也满足△
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.