题目
如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点.
(1)求证:△ADE≌△BCF;
(2)若AD=4cm,AB=8cm,求CF的长.
(1)求证:△ADE≌△BCF;
(2)若AD=4cm,AB=8cm,求CF的长.
提问时间:2020-11-02
答案
(1)证明:∵四边形ABCD为矩形
∴AD=BC,OA=OC,OB=OD,AC=BD,AD∥BC
∴OA=OB=OC,∠DAE=∠OCB(两直线平行,内错角相等)
∴∠OCB=∠OBC
∴∠DAE=∠CBF
又∵AE=
OA,BF=
OB
∴AE=BF
∴△ADE≌△BCF;
(2)过点F作FG⊥CD于点G,
∴∠DGF=90°
∵四边形ABCD是矩形,
∴∠DCB=90°
∴∠DGF=∠DCB
又∵∠FDG=∠BDC
∴△DFG∽△DBC
∴
=
=
由(1)可知F为OB的中点,
所以DF=3FB,得
=
∴
=
=
∴FG=3,DG=6
∴GC=DC-DG=8-6=2
在Rt△FGC中,CF=
∴AD=BC,OA=OC,OB=OD,AC=BD,AD∥BC
∴OA=OB=OC,∠DAE=∠OCB(两直线平行,内错角相等)
∴∠OCB=∠OBC
∴∠DAE=∠CBF
又∵AE=
1 |
2 |
1 |
2 |
∴AE=BF
∴△ADE≌△BCF;
(2)过点F作FG⊥CD于点G,
∴∠DGF=90°
∵四边形ABCD是矩形,
∴∠DCB=90°
∴∠DGF=∠DCB
又∵∠FDG=∠BDC
∴△DFG∽△DBC
∴
FG |
BC |
DF |
DB |
DG |
DC |
由(1)可知F为OB的中点,
所以DF=3FB,得
DF |
DB |
3 |
4 |
∴
FG |
4 |
3 |
4 |
DG |
8 |
∴FG=3,DG=6
∴GC=DC-DG=8-6=2
在Rt△FGC中,CF=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程. 我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好 奥巴马演讲不用看稿子.为什么中国领导演讲要看? 想找英语初三上学期的首字母填空练习…… 英语翻译 最新试题
热门考点
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
|