当前位置: > 用数学归纳法证明:12+22+32+…+n2=n(n+1)(2n+1)6....
题目
用数学归纳法证明:1

提问时间:2020-11-02

答案
证明:(1)当n=1时,左边=12=1,右边=
1×2×3
6
=1
,等式成立.(4分)
(2)假设当n=k时,等式成立,即12+22+32+…+k2
k(k+1)(2k+1)
6
(6分)
那么,当n=k+1时,
12+22+32+…+k2+(k+1)2
k(k+1)(2k+1)
6
+(k+1)2
k(k+1)(2k+1)+6(k+1)2
6
(k+1)(2k2+7k+6)
6
(k+1)(k+2)(2k+3)
6
(k+1)[(k+1)+1][2(k+1)+1]
6

这就是说,当n=k+1时等式也成立.(10分)
根据(1)和(2),可知等式对任何n∈N*都成立.(12分)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.