当前位置: > 证明:表面积相等的球和正方体,球的体积大于正方体的面积...
题目
证明:表面积相等的球和正方体,球的体积大于正方体的面积

提问时间:2020-11-02

答案
当然是球大
假设表面积均为A
则,球的半径为r= √(A÷4π)
球的体积为4/3*π*r^3= √(A^3÷36π)
约为√(A^3÷113.1) 或 (A^3÷113.1)^0.5
正方体的边长为a= √(A÷6)
正方体的体积为a^3= (A÷6)^1.5
还不懂就设A为10000(大点,小了会除出负值)
球的体积约为94030.48963
正方体的体积为68041.38174
当然是球大
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.