当前位置: > 关于线性代数中求对角矩阵的问题....
题目
关于线性代数中求对角矩阵的问题.
一个可对角化的矩阵,代入特征方程λe-a后,得出来的λ假设有3个,那么最后得出来的对角矩阵主对角线上的元素也是这三个,怎么判断这三个元素在对角矩阵里面的排列顺序是哪个先哪个后呢?书上写的λ代入特征方程解出来都是按顺序拍好的,λ1=8,λ3=λ2=2,对角矩阵的元素排列也是822,如果我得出来λ1和λ2是2,λ3是8,那最后得出的对角矩阵就不是228三个元素,而是660.T_T这是为啥?

提问时间:2020-11-02

答案
很明显,排列顺序是可以任意的,它的顺序取决于特征向量的顺序.
如果Ap1=8p1,Ap2=2p2,Ap3=2p3,取矩阵P=(p1,p2,p3),则(P逆)AP=diag(8,2,2).
如果你选择P=(p2,p3,p1),则(P逆)AP=diag(2,2.8).
如果你只是需要知道这个可对角化的矩阵相似于一个什么对角矩阵的话,只要对角线元素是8,2,2这三个数即可,不管顺序如何.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.