当前位置: > 一动圆过定点A(1,0),且与圆(x+1)^2+y^2=16相切,求动圆圆心的轨迹方程....
题目
一动圆过定点A(1,0),且与圆(x+1)^2+y^2=16相切,求动圆圆心的轨迹方程.
又若定点为A(2.0),圆为(x+2)^2+y^2=4呢?

提问时间:2020-11-02

答案
第一个问题是两圆内切,因此动圆圆心到两定点A(1,0)和(-1,0)的距离之和为已知圆的半径4(定值),所以符合椭圆的定义.由于a=2,c=1,因此(x^2)/4+(y^2)/3=1为所求动圆的轨迹方程.第二个问题是两圆外切,因此动圆圆心...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.