当前位置: > 已知PA⊥平面ABCD,四边形ABCD为矩形,PA=AD,M、N分别是AB、PC的中点,求证: (1)MN∥平面PAD; (2)平面PMC⊥平面PDC....
题目
已知PA⊥平面ABCD,四边形ABCD为矩形,PA=AD,M、N分别是AB、PC的中点,求证:

(1)MN∥平面PAD;           
(2)平面PMC⊥平面PDC.

提问时间:2020-11-02

答案
证明:(1)设PD的中点为Q,连接AQ、NQ,
由N为PC的中点知QN∥DC且QN=
1
2
DC,
又ABCD是矩形,∴DC∥AB,DC=
1
2
AB,
又M是AB的中点,∴QN∥AM,QN=AM,
∴AMNQ是平行四边形,
∴MN∥AQ,而AQ⊂平面PAD,NM⊄平面PAD,
∴MN∥平面PAD;
(2)∵PA=AD,∴AE⊥PD,
又∵PA⊥平面ABCD,CD⊂平面ABCD,
∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD,
∴CD⊥AQ,∵PD∩CD=D,∴AQ⊥平面PCD,
∵MN∥AQ,∴MN⊥平面PCD,
又MN⊂平面PMC,
∴平面PMC⊥平面PCD.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.