当前位置: > 用洛必塔法则 求极限 lim(x趋于0) x-arcsinx/sinx^3 谁教下方法...
题目
用洛必塔法则 求极限 lim(x趋于0) x-arcsinx/sinx^3 谁教下方法

提问时间:2020-11-01

答案
lim(x→0) (x-arcsinx)/sinx^3  (分母等价无穷小)
=lim(x→0) (x-arcsinx)/x^3  (0/0,洛必达法则)
=lim(x→0) [1-1/√(1+x^2)]/(3x^2) (通分)
=lim(x→0) [√(1+x^2)-1]/[√(1+x^2)*(3x^2) ] (极限运算法则)
=lim(x→0) [√(1+x^2)-1]/(3x^2) *lim(x→0)1/√(1+x^2)
=lim(x→0) [√(1+x^2)-1]/(3x^2) (分子等价无穷小)
=lim(x→0) 1/2x^2/(3x^2)
=1/6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.