题目
已知a,b属于实数,a方加上2b方等于6,求a+b的最小值?
提问时间:2020-11-01
答案
解法1:判别式法.
设a+b=t,则a=t-b.[1]
代入条件得:(t-b)^2+2b^2=6,
3b^2-2tb+(t^2-6)=0.[2]
∵b是实数,∴判别式Δ≥0,
即4t^2-12(t^2-6)≥0,
化简得:t^2≤9,
∴-3≤t≤3.
当t=-3时,由[2]得b=-1,代入[1]得a=-2.
所以a+b的最小值是-3(当a=-2,b=-1时取到).
解法2:三角换元法
a^2+2b^2=6→(a^2)/6+(b^2)/3=1,
设a=(根6)cosx,b=(根3)sinx,这里x∈R.
a+b=(根3)sinx+(根6)cosx
=根号下[(根3)^2+(根6)^2]sin(x+θ).[1]
=3sin(x+θ),(其中θ是辅助角)
而sin(x+θ)的最小值是-1,
所以a+b的最小值是-3.
说明:[1]式用到公式:asinx+bcosx=根号(a^2+b^2)*sin(x+θ),
其中“辅助角θ”满足条件“tanθ=b/a”,而辅助角θ的象限位置由点(a,b)的象限位置决定.
设a+b=t,则a=t-b.[1]
代入条件得:(t-b)^2+2b^2=6,
3b^2-2tb+(t^2-6)=0.[2]
∵b是实数,∴判别式Δ≥0,
即4t^2-12(t^2-6)≥0,
化简得:t^2≤9,
∴-3≤t≤3.
当t=-3时,由[2]得b=-1,代入[1]得a=-2.
所以a+b的最小值是-3(当a=-2,b=-1时取到).
解法2:三角换元法
a^2+2b^2=6→(a^2)/6+(b^2)/3=1,
设a=(根6)cosx,b=(根3)sinx,这里x∈R.
a+b=(根3)sinx+(根6)cosx
=根号下[(根3)^2+(根6)^2]sin(x+θ).[1]
=3sin(x+θ),(其中θ是辅助角)
而sin(x+θ)的最小值是-1,
所以a+b的最小值是-3.
说明:[1]式用到公式:asinx+bcosx=根号(a^2+b^2)*sin(x+θ),
其中“辅助角θ”满足条件“tanθ=b/a”,而辅助角θ的象限位置由点(a,b)的象限位置决定.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 11有没有倒数,如果有,给我证据;如果没有也请告诉我,也要有证据.
- 2信息对管理效率的提高起什么作用!300到400字左右,
- 3怎样推证摩擦力的公式为f=(1-η)F
- 4A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出
- 5和妈妈去市场购物感受作文
- 6习题:神宗以其____,命名为《资治通鉴》?
- 7牛津高中英语模块五单词表.
- 8已知抛物线:y= -x^ +mx -1 和点A(3,0) B(0,3) .则线段AB和抛物线有两个不同焦点的充要条件是
- 9open my eyes wide还是widely
- 10三角形诱导公式是cos(π+a)=-cosa
热门考点