当前位置: > 已知函数f(x)=ax-a/x-2lnx(a>0),若函数f(x)在其定义域内为单调函数,求a的取值范围...
题目
已知函数f(x)=ax-a/x-2lnx(a>0),若函数f(x)在其定义域内为单调函数,求a的取值范围

提问时间:2020-11-01

答案
导数f'(x)=a+a/x^2-2/x=(ax^2-2x+a)/x^2
若要f(x)在其定义域内为单调函数,则需使f'(x)≥0或f'(x)≤0恒成立
1)若f'(x)≥0恒成立,则有ax^2-2x+a≥0恒成立;
对曲线y=ax^2-2x+a,因a>0,故开口向上;
当△=4-4a^2=4(1-a^2)≤0时,y≥0恒成立,此时1≤a^2,解得a≥1
当△=4-4a^2=4(1-a^2)>0时,即0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.