题目
关于数列的2道题目
1. 数列{an}是首项为1000,公比为1/10的等比数列,{an}是通项为bn=(1/n)(lga1+lga2+...=lgan)的数列,求{an}的前n项和Sn的最大值
2. 数列an=n的项按如下顺序排列成数表
1
2 3
4 5 6
7 8 9 10
... ...
求:(1) 第n行各数之和
(2) 前n行各数之和
1. 数列{an}是首项为1000,公比为1/10的等比数列,{an}是通项为bn=(1/n)(lga1+lga2+...=lgan)的数列,求{an}的前n项和Sn的最大值
2. 数列an=n的项按如下顺序排列成数表
1
2 3
4 5 6
7 8 9 10
... ...
求:(1) 第n行各数之和
(2) 前n行各数之和
提问时间:2020-11-01
答案
{an}是首项为1000,公比为1/10的等比数列.
则
an=1000*1/10^(n-1)=10^(n+2)
bn=(1/n)(lga1+lga2+...+lgan)
=(1/n)(lga1*2+...*an)
=(1/n)[lg(a1)^n *10^(1+2+...+n-1)]
=(1/n)[nlga1+ lg10^n(n-1)/2]
=3+1/2(n-1)
则bn 为等差数列
Sn=[3+3+1/2(n-1)]*n/2
=(n+11)n/4
___________________________________________________________
显然,
第n行有n个数.而前面一共有数:
1+2+...+n-1=n(n-1)/2
那么第n行
第一个数n(n-1)/2+1
最后一个数为前n行的数的个数,为
1+2+...+n=n(n+1)/2
即第n行最后一个数为n(n+1)/2
所以第n行各数之和 :
[n(n-1)/2+1+n(n+1)/2]*n/2
=(n^3+n)/2
因为第n行各数之和 :
[n(n-1)/2+1+n(n+1)/2]*n/2
=(n^3+n)/2
所以前n行各数之和为
∑(n^3+n)/2
=(∑n^3+∑n)/2
=[n(n+1)/2]^2 /2+n(n+1)/4
=[n(n+1)/4][n(n+1)/2+1]
=n(n+1)[n(n+1)+2]/8
其中:立方和参考:http://zhidao.baidu.com/question/16413317.html
则
an=1000*1/10^(n-1)=10^(n+2)
bn=(1/n)(lga1+lga2+...+lgan)
=(1/n)(lga1*2+...*an)
=(1/n)[lg(a1)^n *10^(1+2+...+n-1)]
=(1/n)[nlga1+ lg10^n(n-1)/2]
=3+1/2(n-1)
则bn 为等差数列
Sn=[3+3+1/2(n-1)]*n/2
=(n+11)n/4
___________________________________________________________
显然,
第n行有n个数.而前面一共有数:
1+2+...+n-1=n(n-1)/2
那么第n行
第一个数n(n-1)/2+1
最后一个数为前n行的数的个数,为
1+2+...+n=n(n+1)/2
即第n行最后一个数为n(n+1)/2
所以第n行各数之和 :
[n(n-1)/2+1+n(n+1)/2]*n/2
=(n^3+n)/2
因为第n行各数之和 :
[n(n-1)/2+1+n(n+1)/2]*n/2
=(n^3+n)/2
所以前n行各数之和为
∑(n^3+n)/2
=(∑n^3+∑n)/2
=[n(n+1)/2]^2 /2+n(n+1)/4
=[n(n+1)/4][n(n+1)/2+1]
=n(n+1)[n(n+1)+2]/8
其中:立方和参考:http://zhidao.baidu.com/question/16413317.html
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1Tom has a ____(ougch)
- 2已知一组数据有三个数10、15、21,10和15的频率分别是1/2、1/4,那么这组数据的平均数是
- 3his speech has had strong influence on the audience
- 4丹麦哥本哈根现在几点
- 5已知两个不同的单位分数之和是1/2004,且这两个单位分数的分母都是四位数,那么这两个单位分数的分母的差的最小值是_.
- 6CL21 205J 400V电容其字母和数字是什么意思?可以用CL21 224J 400V代替吗?
- 7怎样写好一二年级看图写话?
- 8we are half a word away
- 9英语翻译
- 10改病句:读了这个故事,使我感受到动物之间生死相依的浓浓亲情.
热门考点
- 11^k+2^k+3^k+.+n^k 有无表达式
- 2the most beautiful scenery and I always pass是什么意思
- 3求:论文摘要翻译 请英语高手帮帮忙,拒绝翻译器
- 4丑角脸的介绍
- 5I‘ve got two presents ________Mum and Dad.
- 6已知x1,x2是一元二次方程ax^2+bx^2+c=0(a不等于0)的两个根,求证x1+x2=-b/a,x1x2=c/a
- 7有理数的绝对值会是负数吗?为什么?
- 8诸葛亮死前说了一句话是什么?打一日常用语
- 9人山人海是比喻还是夸张
- 10直角三角形直角顶点(-2,3),斜边在直线方程4X-3Y-7=0,斜边中线在直线的斜率为-4/3,求两直线所在直线方程.