题目
已知0<x≤π/4,求函数y=csc2x+tanx的最小值.
如题,用三角方程的有解条件做比较方便(acosx
+bsinx=c的有解条件为a^2+b^2≥c^2.
如题,用三角方程的有解条件做比较方便(acosx
+bsinx=c的有解条件为a^2+b^2≥c^2.
提问时间:2020-11-01
答案
y=csc2x+tanx=1/(2sinxcosx)+tanx=sec²x/[(2sinxcosx)sec²x]+tanx
=(1+tan²x)/(2tanx)+tanx=3tanx/2+1/(2tanx)≥2√(3/4)=√3
当且仅当3tanx/2=1/(2tanx)时,取得“=”
∴3tan²x=1 ∴tanx=√3/3 ∵0<x≤π/4 ∴x=π/6
∴当x=π/6时,y=csc2x+tanx有最小值√3
∵acosx+bsinx=c ∴√(a²+b²)[a/√(a²+b²)cosx+b√(a²+b²)sinx]=c
∴√(a²+b²)sin(x+θ)=c 其中tanθ=a/b
∴要使acosx+bsinx=c有解,即sin(x+θ)=c/√(a²+b²)有解
∴sin(x+θ)≤1 ∴c/√(a²+b²)≤1 ∴a²+b²≥c²
=(1+tan²x)/(2tanx)+tanx=3tanx/2+1/(2tanx)≥2√(3/4)=√3
当且仅当3tanx/2=1/(2tanx)时,取得“=”
∴3tan²x=1 ∴tanx=√3/3 ∵0<x≤π/4 ∴x=π/6
∴当x=π/6时,y=csc2x+tanx有最小值√3
∵acosx+bsinx=c ∴√(a²+b²)[a/√(a²+b²)cosx+b√(a²+b²)sinx]=c
∴√(a²+b²)sin(x+θ)=c 其中tanθ=a/b
∴要使acosx+bsinx=c有解,即sin(x+θ)=c/√(a²+b²)有解
∴sin(x+θ)≤1 ∴c/√(a²+b²)≤1 ∴a²+b²≥c²
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1集合A={a,b,c},B={-1,0,1},映射f:A→B满足f(a)=f(b)+f(c).求出所有f.
- 2已知a=(1,3),b=(2+λ,1),且a与b成锐角,则实数λ的取值范围是 _ .
- 3一项工程,甲乙合作需12天完成,若甲先做3天后,再由乙工作8天,共完成这项工作5/12,如果这件工作由乙单独做,需多少天完成?
- 4证明:任取8个自然数,必有两个数的差是7的倍数.
- 5一段长2米的长方体木料,如果锯掉4CM长,体积就减少42立方厘米,这段木料原来的体积是多少立方厘米?
- 6已知直线过P(1,2)且到点A(2,3),B(0,5)的距离相等,求这条直线的方程.
- 7定义在R上的函数y=f(x)它的图像既关于直线x=1对称,又关于x=3对称,且当x 大于等于-1小于等于1时
- 8两个质数一定是互质数._.
- 9物理存储器指的是什么
- 10一个圆锥的体积不变,如果他的高缩小为原来的9分之1,底面半径应?
热门考点