当前位置: > 已知函数f(x)=1/2x^4+bx^3+cx^2+dx+e(x∈R)分别在x=0和x=1处取得极值...
题目
已知函数f(x)=1/2x^4+bx^3+cx^2+dx+e(x∈R)分别在x=0和x=1处取得极值
.若函数f(x)在x=0处取极大值:①判断c的范围 ②若此时函数f(x)在x=1时取极小值,求c的范围

提问时间:2020-11-01

答案
f'(x)=2x^3+3bx^2+2cx+d
f"(x)=6x^2+6bx+2c
1)由题意得:f'(0)=d=0,f"(0)=2c
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.