题目
已知等差数列{an}的公差大于0,且a3,a5是方程x²-14x+45=0的两根,数列{bn}为bn=2n/(2的n+1次方),求bn的前n项和,Tn
an已经求出来是2n-1...
an已经求出来是2n-1...
提问时间:2020-11-01
答案
a3,a5是方程x²-14x+45=0的两根
则a3+a5=14
即a1+2d+a1+4d=2a1+6d=14
a1+3d=7 a1=7-3d (1)
a3*a5=45
即(a1+2d)(a1+4d)=(7-d)(7+d)=49-d²=45
d²=4 因d>0 所以d=2
代入(1) a1=7-3*2=1
所以an=1+2(n-1)=2n-1
Sn=1-(1/2)bn
1. n=1时 S1=1-(1/2)b1 解得b1=2/3
2. n>1时 S(n-1)=1-(1/2)b(n-1)
所以bn=Sn-S(n-1)=-(1/2)bn+(1/2)b(n-1)
bn=(1/3)b(n-1)
所以{bn}是公比为1/3的等比数列
bn=(2/3)*(1/3)^(n-1)=2*(1/3)^n
(2) cn=anbn=2(2n-1)*(1/3)^n
c(n+1)=2(2n+1)*(1/3)^(n+1)
cn-c(n+1)=2(1/3)^(n+1)*[3(2n-1)-(2n+1)]
=2(1/3)^(n+1)(4n-4)
=4(n-1)(1/3)^(n+1)
因为n≥1
所以c(n+1)≤cn
则a3+a5=14
即a1+2d+a1+4d=2a1+6d=14
a1+3d=7 a1=7-3d (1)
a3*a5=45
即(a1+2d)(a1+4d)=(7-d)(7+d)=49-d²=45
d²=4 因d>0 所以d=2
代入(1) a1=7-3*2=1
所以an=1+2(n-1)=2n-1
Sn=1-(1/2)bn
1. n=1时 S1=1-(1/2)b1 解得b1=2/3
2. n>1时 S(n-1)=1-(1/2)b(n-1)
所以bn=Sn-S(n-1)=-(1/2)bn+(1/2)b(n-1)
bn=(1/3)b(n-1)
所以{bn}是公比为1/3的等比数列
bn=(2/3)*(1/3)^(n-1)=2*(1/3)^n
(2) cn=anbn=2(2n-1)*(1/3)^n
c(n+1)=2(2n+1)*(1/3)^(n+1)
cn-c(n+1)=2(1/3)^(n+1)*[3(2n-1)-(2n+1)]
=2(1/3)^(n+1)(4n-4)
=4(n-1)(1/3)^(n+1)
因为n≥1
所以c(n+1)≤cn
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1木兰诗中说明战争旷日持久,战斗激烈持久的名句是……
- 2愿好运伴随你一生英语怎么说
- 3根据文意及首字母提示,填入恰当的词语
- 4甲、乙两列汽车同时从两地出发,相向而行.已知甲车每小时行45千米,乙车每小时行32千米,相遇时甲车比乙车多行52千米.求甲乙两地相距多少千米?
- 5数学:1,45千克盐水中含盐6千克,如果再加入5千克盐,使其完全溶解,这时盐水含盐率多少?
- 6"加速度就是加出来的速度"这句话对吗?
- 7函数f(x)=2^x-2/x-a的一个零点在区间(1,2)内,则实数a的取值范围是多少 :∵函数f(x)=2^x-2/x-a的一个零点在区间(1,2)内,
- 8已知四边形ABCD是边长为4的正方形,E,F分别是边AB,AD的中点,GC垂直于正方形ABCD所在的平面,GC=2,则点B到平面EFG的距离为?
- 9大礼堂里挤满了人.改成比喻句
- 10补充下列句中省略的部分:(1)宋有富人,天雨( )墙坏.(2)其子曰:“(
热门考点